Temperature Measurements in Flames at 1000 Hz Using Femtosecond Coherent Anti-Stokes Raman Spectroscopy
نویسندگان
چکیده
[Abstract] Single-laser-shot temperature measurements at a data rate of 1 kHz are demonstrated using femtosecond coherent anti-Stokes Raman scattering (CARS) spectroscopy. The excitation of gas-phase Raman lines with spectral widths of 3 GHz by pump and Stokes beams with spectral widths of 3000 GHz is very efficient provided that the pump and Stokes beams are Fouriertransform-limited. The single-laser-shot measurements were performed by using a chirped probe pulse to map the time-dependent frequency-spread decay of the Raman coherence into the spectrum of the CARS signal pulse. Temperature is determined from the spectral shape of the chirped-probe femtosecond CARS signal for probe delays of approximately 2 picoseconds with respect to the impulsive pump-Stokes excitation of the Raman coherence. Fs CARS spectra with very high signal-to-noise ratios are acquired from laminar flames, forced unsteady flames, and turbulent flames. The fs CARS spectrum is not affected by collisional line shapes in contrast to ns CARS spectroscopy. However, the fs CARS spectrum is affected by the spectrum and phase of the pump, Stokes, and probe beams, and the effect of departures from the assumptions of Fourier-transform-limited pump and Stokes beam and a linearly chirped probe beam are discussed.
منابع مشابه
Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for high-speed gas-phase thermometry.
We demonstrate hybrid femtosecond/picosecond (fs/ps) coherent anti-Stokes Raman scattering for high-speed thermometry in unsteady high-temperature flames, including successful comparisons with a time- and frequency-resolved theoretical model. After excitation of the N(2) vibrational manifold with 100 fs broadband pump and Stokes beams, the Raman coherence is probed using a frequency-narrowed 2....
متن کاملTEMPERATURE MEASUREMENTS IN REACTING FLOWS USING TIME-RESOLVED FEMTOSECOND COHERENT ANTI-STOKES RAMAN SCATTERING (fs- CARS) SPECTROSCOPY (POSTPRINT)
Time-resolved femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy of the nitrogen molecule is used for the measurement of temperature in atmospheric-pressure, near-adiabatic, hydrogen-air diffusion flames. The initial frequency-spread dephasing rate of the Raman coherence induced by the ultrafast ( 85 fs) Stokes and pump beams is used as a measure of gas-phase temperature. ...
متن کاملHybrid fs/ps CARS Spectroscopy for Single-Shot kHz-Rate Thermometry in High-Temperature Flames
This work expands on previous studies to utilize hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps CARS) in high-temperature flames for background-free thermometry. The goal of the current work is to quantify the precision and accuracy of the temperature measurements over an expanded temperature range from 1250 – 2400 K, while also quantifying the influence of nonresona...
متن کاملThermometry for turbulent flames by coherent anti-Stokes Raman spectroscopy with simultaneous referencing to the modeless excitation profile.
An optimal system for temperature measurements by coherent anti-Stokes Raman spectroscopy (CARS) in turbulent flames and flows is presented. In addition to a single-mode pump laser and a modeless dye laser, an echelle spectrometer with a cross disperser is used. This system permits simultaneous measurement of the N2 CARS spectrum and the broadband dye laser profile. A procedure is developed to ...
متن کاملCoherent Anti-Stokes Raman Spectroscopy (CARS) Applied in Combustion Probing
\Ye have applied Coherent Anti-Stokes Raman Spectroscopy (CARS) for monitoring of a variety of important molecules in combustion media. A survey of different CARS techniques ranging from simple, scanning measurements of major species like N , to single-pulse, broad-band arraydetector registration of less abundant species is made. The CARS, BOXCARS and folded BOXCARS approaches were used observi...
متن کامل